​​ Bibliographie

​​ Bibliographie

Voici une liste d’œuvre que vous pouvez consulter.

Abad, R., Ierkicy, M., & Ortiz-Riveraz, E. (2016). Basic Understanding of Cognitive Radar.

Affili, E., Dipierro, S., Rossi, L., & Valdinoci, E. (2020). Civil Wars : A New Lotka-Volterra Competitive System and Analysis of Winning Strategies.

Ahmad, F., Malik, M., & Bhat, M. (2016). Gravitational clustering of galaxies: Derivation of two-point galaxy correlation function using statistical mechanics of cosmological many-body problem.

Ahmad, F., Saslaw, W., & Bhat, N. (2002). STATISTICAL MECHANICS OF THE COSMOLOGICAL MANY-BODY.

(2019). Artificial Intelligence index 2019 – Annual report. Stanford University.

Artime, O., Khalil, N., Toral, R., & San Miguel, M. (2018). First-passage distributions for the one{dimensional Fokker-Planck equation.

Babu, G., & Feigelson, E. (1996). Spatial point processes in astronomy.

Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality. Springer.

Baryshev, Y., & Teerikorpi, P. (2005). Fractal Approach to Large-Scale Galaxy Distribution.

Benasciutti, D., & Tovo, R. (2004). RAINFLOW CYCLE DISTRIBUTION AND FATIGUE DAMAGE IN GAUSSIAN RANDOM LOADINGS.

Bergé, P. (1984). De l’Ordre au Chaos.

Bhatt, S., Dedania, H., & Shah, V. (2015). Fractal Dimensional Analysis in Financial Time Series.

Blair, G., Henrys, P., Leeson, A., Watkins, J., Eastoe, E., Jarvis, S., & Young, P. (2018). Data Science of the Natural Environment: A Research Roadmap .

Brander, J., & Taylor, S. (1998). The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use. American econimic review.

Brandt, G., & Merico, A. (2015). The slow demise of Easter Island: insights from a modeling investigation. Frontiers in ecology and evolution.

Capra, F. (s.d.). Léonard de Vinci, homme de science.

Chautard, A. (2022). Data science et complexité.

Cheng, L., Wang, Z., Jiang, F., & Li, J. (2019). Adaptive neural network control of nonlinear systems with unknown dynamics.

Consoli, S. (2021). Data Science for Economics and Finance: Methodologies and Applications . Springer.

D’Alessandro, S. (2006). Non-Linear Dynamics of Population and Natural Resources: The Emergence of Different Patterns of Development.

de Groot, A. (1969). Methodology. Foundations of inference and research in the behavioral sciences.

Deming, W. (s.d.). Out of the Crisis.

Dilts, R. (1992). Vinci et Holmes. Desclée de Brouwer.

Dobson, I., Carreras, A., & Newman, D. (2004). A branching process approximation to cascading load-dependent system failure.

Donnadieu, G., & Karsky, M. (2002). La systémique, penser et agir dans la complexité. Ed. Liaisons.

Driver, D., & Tehranchi, M. (2007). An optimization-based representation for reaction-diffusion equations. University of Cambridge.

Erdi, P. (2008). Complexity explained. Springer.

Feller, W. (s.d.). Diffusion Processes in Genetics. Princeton University.

Fisher, R. (1937). The wave of advance of avantageneous genes. Journal of Eugenics.

Frette, V., & Christensen, K. (1996). Avalanche dynamics on a pile of rice. Nature.

Garcia, E. (2019). PREDATOR-PREY: AN EFFICIENT MARKETS MODEL OF STOCK MARKET BUBBLES AND THE BUSINESS CYCLE. Deloitte Consulting.

Gil, A., Segura, J., & Temme, N. (2015). Efficient algorithms for the inversion of the cumulative central beta distribution.

Gini, F., & Rangaswamy, M. (2008). Knowledge based radar detection, tracking and classification.

Gneiting, T., Ševčíková, H., & Percival, D. (2010). Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data.

Gomez, R., Molina, R., Catillo, E., & Castillo, C. (2012). Wave Analysis Using Rainflow Information. IEEE.

Greco, M., Gini, F., Stinco, P., & Bell, K. (2019). Cognitive Radars: A Reality?

Grigoriu, M., & Hall, P. (1995). Applied Non Gaussian processes.

Grou, P., Notalle, L., Chaline, J., & Brissaud, I. (2012). Log-periodic expansions of Russian and Roman Territories.

Gurbuz, S., Griffiths, H., Charlish, A., Rangaswamy, M., Greco, M., & Bell, K. (2019). An Overview of Cognitive Radar: Past, Present, and Future.

Guttorp, P. (1992). Three papers on the history of branching processes translated from Danish. Department of Statistics, University of Washington.

Harris, T. (s.d.). Some mathematical models for branching processes. The Rand Corporation.

Haykin, S., & Puthusserypady, S. (1999). Chaotic Dynamics of Sea Clutter.

Hendrick, M., & Renard, P. (2016). Fractal Dimension, Walk Dimension and Conductivity Exponent of Karst Networks around Tulum.

Hernando, A., & Plastino, A. (2012). Variational Principle underlying Scale Invariant Social Systems.

Hernando, A., Hernando, R., Plastino, A., & Plastino, A. (2012). The workings of the Maximum Entropy Principle in collective human behavior.

Jia, W., Xu, Y., Li, D., & Hu, R. (2021). Stochastic Analysis of Predator – Prey Models under Combined Gaussian and Poisson White Noise via Stochastic Averaging Method. Entropy.

Kantz, H., & Schreiber, T. (1997). Nonlinear Time Series analysis.

Kiss, I., Miller, J., & Simon, P. (s.d.). Mathematics of epidemics on networks : from exact to approximate models.

Kloppers, P., & Greeff, J. (2013). Lotka-Volterra model parameter estimation using experiential data.

Kwon, C., Ao, P., & Thouless, D. (2005). Structure of stochastic dynamics near fixed points.

Lemarchand, A., Nainville, I., & Mareschal, M. (1996). Fractal dimension of reaction-diffusion wave fronts. Europhysics journal.

Lindgren, G. (2004). Cycle Range Distributions for Gaussian ProcessesV Exact and Approximative Results.

Liu, G., Wang, D., & Hu, Z. (2016). Application of the Rain-flow Counting Method in Fatigue.

Lu, P., Yang, H., Li, M., & Zhang, Z. (2021). The sandpile model and em pire dynamics. Chaos, solitons & fractals.

Luchinskya, D., Smelyanskiya, V., Millonasa, M., & McClintocka, P. (2005). Reconstruction of stochastic nonlinear dynamical models from trajectory measurements.

Maheshwari, A. (2015). AN EMPIRICAL STUDY OF GOODWIN GROWTH MODELS. M. Sc. Thesis.

Mandelbrot, B. (1975). Les Objets fractals : forme, hasard et dimension.

Marmanis, H. (1996). On the analogy between electromagnetism and turbulent hydrodynamics.

Myers, C. (1988). A fractal analysis of diffusion limited aggregation.

Nelson, E. (1966). Derivation of the equation of Shrodinger from Newtonian mechanics. Physical Review.

Nicolás-Carlock, J., & Carrillo-Estrada, J. (2019). A universal dimensionality function for the fractal dimensions of Laplacian growth. Scientific reports.

Niven, R., & Andresen, B. (2011). Jaynes’ Maximum Entropy Principle, Riemannian Metrics and Generalised Least Action Bound.

Ochi, M. (1990). Applied probability and statistic processes. Wiley & Sons.

Ochi, M. (1990). Applied probability and stochastic processes.

Palyulin, V., Blackburn, G., Lomholt, M., Watkins, N., Metzler, R., Klages, R., & Chechkin, A. (2019). First passage and first hitting times of Lévy flights and Lévy walks. New journal of physics.

Peinke, J., Sahimi, M., & Rahimi Tabar, R. (2011). Approaching complexity by stochastic methods: From biological systems to turbulence. Physics report.

Penrose, R. (2004). À la découverte des lois de l’Univers, La prodigieuse histoire des mathématiques et de la physique. Odile Jacob.

Petrvskii, & Piskunov. (1975). Application of brownian motion to the equation of Kolmogorov. Communication in pure and applied mathematics.

Phan, D., Nadal, J.-P., & Gordon, M. (s.d.). Cognitive economics An interdisciplinary approach – Chapitre 20 – Social interactions in Economic Theory An insight from statistical Mechanics.

Prasad, R. (1989). The fractal geometry of interfaces and the multifractal distribution of dissipation in fully turbulent flows.

Prigogine, I., & Kondepudi, D. (1999). Thermodynamique.

Puthoff, H. (2008). Linearized Turbulent Fluid Flow as an Analog Model for Linearized General Relativity (Gravitoelectromagnetism).

Roberts, D., & Turcotte, D. (1998). Fractality and self-organized critically of wars. Fractals.

Rypdal, M., & Rypdal, K. (2008). Modeling temporal fluctuations in avalanching systems. Physical Review.

Sapoval, B., Rosso, M., & Gouyet, J. (1984). The Fractal Nature of a Diffusion Front and the Relation to Percolation. Journal of Physical letters.

Saslaw, W., & Hamilton, A. (2005). THERMODYNAMICS AND GALAXY CLUSTERING: NONLINEAR THEORY OF HIGH ORDER CORRELATIONS.

Savageau, M. (1979). Growth Équations : A General Équation and a Survey of Special Cases.

Sayama, H. (2015). Introduction to the modeling and analysis of complex systems.

Shabbir, G., Khan, H., & Sadiq, M. (s.d.). A note on Exact solution of SIR and SIS epidemic models”. Faculty of Engineering Sciences, GIK Institute of Engineering Scienes and Technology.

Shewhart, W. (s.d.). Statistic control.

Shizgal, B. (2015). Spectral methods in chemistry and physics.

Sivakoff, G., & Saslaw, W. (2005). THE GALAXY DISTRIBUTION FUNCTION FROM THE 2MASS SURVEY.

Skorokhod, V., & Translated by B. Seckler. (1964). Branching diffusion processes. Theory of Probability and its applications.

Smith, D., & Singh, S. (2006). Approaches to Multisensor Data Fusion in Target Tracking: A Survey.

Song, C., Gallos, L., Havlin, S., & Makse, H. (2007). How to calculate the fractal dimension of a complex network: the box covering algorithm.

Sornette, D., & Sammis, C. (2007). Complex Critical Exponents IFom Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions. Journal de Physique.

Spinney, L. (2012). History as science. Nature.

Sterman, J. (s.d.). Business dynamics , System thinking and modeling for a complex world.

Suda, T. (2019). CONSTRUCTION OF LYAPUNOV FUNCTIONS USING HELMHOLTZ–HODGE DECOMPOSITION.

Suryanto, A. (2013). Stability analysis of the Euler discretization for SIR epidemic model.

Taagepera, R. (1978). Size and duration of empires – Growth decline curves – 3000 BC to 600 BC. Social Science research.

Tranquillo, J. (2019). An Introduction to complex systems – Making sense of a changing world. Springer.

Turchin, P. (s.d.). How empires rise and fall.

Turchin, P., & Gavrilets, S. (2009). Evolution of Complex Hierarchical Societies. Social evolution and history.

von Bertalanffy, L. (1968). General System Theory.

Wang, S.-Y., Chen, W.-M., & Wu, X.-L. (2021). Competition Analysis on Industry Populations Based on a Three-Dimensional Lotka-Volterra Model.

Weber, L. (2006). A Contribution To Goodwin’s Growth Cycle Model From A System Dynamics Perspective.

Wijngaarden, R., Lőrincz, K., & Aegerter , C. (2006). Nonlinear Dynamics and Fractal Avalanches in a Pile of Rice.

Wolfgang, P. (1999). Stochastic processes from Physics to finance. Springer.

Yates, F. (2014). Science et tradition hermétique. Ed. Allia.

Yuvan, S., & Bier, M. (2018). A reaction–diffusion model for market fluctuations – A relation between price change and traded volumes. Physics Letters.

Zambrano, E., Hernando, A., Fernandez Bariviera, A., Hernando, R., & Plastino, A. (2015). Thermodynamics of firms’ growth.

Publications similaires

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *